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Some special features of the solutions of the problem of the optimal control of the spatial reorientation and simultaneous total 
retardation of the initial rotation of an absolutely solid spherically symmetric body in the case of an unspecified time are studied. 
The principal moment of the external applied forces serves as the control. The quality of the control process is estimated by an 
integral functional which characterizes the overall power consumption required to accomplish the manoeuvre. In a special case, 
this functional has the form of the well-known integral-quadratic functional. It is established that the problem of controlling the 
reorientation and simultaneous retardation of a rigid body with an unspecified time in the class of measurable controls, which 
is optimal with respect to power consumption, has no solutions for almost any initial conditions. One of the possible minimizing 
sequences is explicitly constructed. It is shown that the smallest values of the objective functionals in the problem of reorientation 
with retardation and in the problem of the total retardation of the initial rotation are identical. In particular, zero minimum 
power consumptions corresponds to the reorientation of a spherically symmetric body from a position of rest into a position of 
rest if the time at which the process terminates is not fixed. The uniqueness of the solution of the problem of optimal retardation 
is proved when an additional assumption is made concerning rigorous normalization. © 2004 Elsevier Ltd. All rights reserved. 

The geometrical characteristic of the optimal turns of a symmetric body in a position of rest were 
investigated in [1, 2] and certain properties of Hamiltonian systems arising as a result of the application 
of the formalism of the maximum principle were considered. At the present time, there are many papers 
which analyse problems of the optimal control of angular motion. However, due to the substantial non- 
linearity of these problems, there are practically no results relating to the problem of the existence of 
solutions and proofs of their optimality. In this paper, the conditions for the existence of a solution in 
the problem of reorientation with simultaneous retardation of the initial rotation are obtained using 
time deformation transforms. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

We shall use elements of the matrixA ~ SO(3) of the direction cosines as the kinematric parameters 
of the angular motion. This matrix describes the change in the mutual position of the local and inertial 
system of coordinates with a common origin at the centre of mass [3, 4]. We shall write the equation 
in projections onto the axes of the local system of coordinates. Suppose ~ = (0)1, o~, 0)3) T ~ E3 is 
the angular velocity vector, S(t~) is the skew-symmetric matrix 

S(~)  = 
0 . ( 0  3 0) 2 

0)3 0 --0)1 

--0)2 0)I 0 
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and u ~ ~3 is the external control moment. A spatial manoeuvre of reorientation with simultaneous 
retardation of the initial rotation of a spherically symmetric body with unit inertial tensor is considered. 
This is described by the boundary-value problem 

A(O) = B, ,it = - S ( t o ) A ,  A(T)  = C 

to(0) = v, tb = u almost everywhere t~  [0, T], to(T) = 0 
(1.1) 

The controls u(t) will be chosen from the class of measurable functions of time. The time, T, at which 
the process terminates is not specified. 

We will choose the four-parameter family of functions of the form 

J = J(T, u, t o ) =  aUuH~i,(i0,r]),v + b[ltoU~!,tt0,rl).~," a > 0 ,  b > 0  (1.2) 

as the criterion which characterizes the value of the overall power consumption for the execution of 
the manoeuvre. The norm of the three-dimensional function in the space L3([0, T]) is introduced in 
the usual manner 

( ~llp 

",{0, T] ~' 

where Ix is the Lebesgue measure and 1" [ v and 1" [ ~ are vector norms in ~3. The purpose of the control 
is to minimize the power consumption 

J --> inf (1.3) 

where the lower part is sought over all possible admissible trajectories, controls and termination times. 
The numbers Pl, P2, rl, r2 are the parameters. The ranges of possible values of these numbers are 

taken to be as follows: 

1 - < p t < ~ ,  P2>O, l < r ] < * * ,  r2>O (1.4) 

This choice of a family of functions is explained by the fact that all of them, to a certain extent, 
characterize power consumptions, and the choice of the corresponding values depends to a large extent 
on the investigator and the specific slave mechanisms. The version Pl = P2 = rl = r2 = 2, which 
corresponds to an integral-quadratic problem, is the most common. If, however, rocket motors serve 
as the slave mechanisms, then the choice of the valuespl = P2 = 1, r] = r 2 = 2 is more convenient 
since, in this case, the first term characterizes the overall consumption of the working body and the 
second term characterizes the overall kinetic energy. 

We will now introduce definitions which will be required later. We call a process which is admissible 
in boundary-value problem (1.1)-(1.3) a quadruplet 

(T, u(t), to(t), A(t); t ~ [0, T]) ~ [0, **) x L3p~([0, T]) x AC3([0, T]) x AC3 ×3([0, T]) 

the elements of which satisfy the differential equations, the boundary conditions and the condition 
3 J(T, u, ~)  < ~ .  For given B, C ~ SO(3) and v e R ,  we will denote the set of all processes which are 

permissible in problem (1.1)-(1.3) by ~(B, C, v). Problem (1.1)-(1.3) therefore consists of finding 

inf J(T, u, to) (1.5) 
~(B, c, v) 

By virtue of the non-obvious construction of the set 2((B, C, v), it is not possible to use the classical 
results (a modification of Weierstrass' theorem). Arguments will therefore now be put forward which 
enable one to draw certain conclusions concerning the special features of problem (1.1)-(1.3). 

2. M I N I M I Z I N G  S E Q U E N C E S  IN THE P R O B L E M  OF R E O R I E N T A T I O N  

It is obvious that ~(B, C, v) ¢ O for any set of boundary conditions. In non-linear problem (1.1)-(1.3), 
it is possible to construct a solution using space - time decomposition. In fact, we shall show that a 
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minimizing sequence of processes can be constructed as a sequence of two manoeuvres, one following 
the other: total retardation and, then, reorientation from a position of rest into a position of rest. The 
optimality of the geometry of the well-known solution, admissible in boundary-value problem (1.1), in 
the form of two successive planar turns will thus be confirmed. 

We will now consider the problem of total retardation in an unspecified time 

to(0) = v, O = u almost everywhere t ~  [0, T], to(T) = 0 (2.1) 

J(T, u, to) --> inf (2.2) 

By a process which is permissible in problem (2.1), (2.2), we shall mean the triple 

(T, u(t), to(t); T ~ [0, T]) ~ [0, ,,*) x Lap,([0, T]) x AC3([0, T]) 

the elements of which satisfy the differential equation, the conditions on the right-hand and left-hand 
ends and for which J(T, u, to) < oo almost everywhere in [0, 7]. For a given v ~ ~3, we will denote the 
set of all processes which are admissible in boundary-value problem (2.1) by Od(v). In this case, the optimal 
control problem (2.1), (2.2) consists of finding inf J(T, u, to). 

~(v) 
We note again that ~(v)  ~ O and introduce the notation 

) ( v )  = inf  J(T, u, to) < o. 
~d(v) 

If  
(T, u(t) ,  to(t) ,  A(t ) ;  t ~ [0, T])  

is an arbitrary admissible process in boundary'value problem (1.1)-(1.3), then the process 

(T, u(t) ,  to(t);  t ~ [0, T]) 

corresponding to it is admissible in problem (2.1), (2.2). The inequality 

inf J (T ,u ,  to )>  in f J (T ,u ,  to) 
• (B, c, v) ~(v) 

(2.3) 

therefore holds. It will be proved later that it is actually the equality which holds. 
We will now first consider the problem of reorientation from a position of rest into a position of rest 

with an unspecified completion time 

A(O) = B, 4 = - S ( t o ) A ,  A(T)  = C 

to(0) = 0, 6~ = u almost everywhere t~  [0, T], to(T) = 0 (2,4) 

J(T, u, to) -> inf 

We will show that, for any choice of B, C ~ SO(3), the equality 

inf J (T ,u ,  co) = 0 
• (B, c o) 

(2.5) 

holds, for which we construct the corresponding minimizing sequence in the following manner. 
It is clear that ~(B, C, 0) ~ O, and we therefore choose any admissible process 

(T, u(t), to(t), A(t); t ~ [0, T]) 

from ~(B, C, 0). Now, for each natural k, we determine a new process 

(Tk, uk(t ), tok(t), Ak(t); t ~ [0, Tk]) 

using the formulae 

Ak(kt ) .-- Al( t ) ,  tok(kt) = k-ltol(t);  uk(kt ) = k-2u~(t) almost everywhere t E [0, TI] 
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where 

A l ( t )  = A( t ) ,  0~l(t  ) = to ( t ) ,  u l ( t  ) = u ( t ) ,  T] = T 

These formulae take a more convenient form if we change to the new variable "c = kt in them 

Ak(X) = A l ( k - l x ) ,  ¢ok(x) = k-ltol(k-lx) 
(2.6) 

uk(x ) = k-2Ul(k-lx)  almost everywhere Tt, = k T  l, x e [0, Tk] 

These relations describe the simplest version of time deformation, that is, time dilatation. 
We will now show that a process, constructed using formulae (2.6), is admissible in boundary-value 

problem (2.4). Actually, the following conditions on the left-hand and right-hand ends are satisfied for 
each natural k 

At(O ) = Al(O ) = B, Ak(Tk) = AI (T I )  = C 

(ok(0) = k-l(Ol(0) = 0, (Ok(T k) = k - l t o l (T l )  = 0 

Direct calculations show that the differential equations of problem (2.4) 

Ak(x)  = 
dA~(x) d A l ( k - l x )  

m 

dx dx 
- .S (k - lco l (k - lx ) )Al (k - lx )  = -S(¢o , (x ) )Ak(x  ) 

(Ok(X) = d(ok(X) = k - l d ( ° l ( k - i x )  = k-2Ul(k- l~ )  = uk(X) 
dx dx 

also hold for (almost all) x ~ [0, Tg]. 
We will now estimate the corresponding values of the functionals. For each natural k, we have 

P2 r2 m 

/ /" /  / _ Pl 4" b f rl = 

[0, Tk] [0, T k] 

P2 r2 a 
Pl "~Pi -1 -1 r! rl 

P2 r2 
"2(1 - 2Pl)/" "~Pl r2(l - rl)/" / ~ iw(s)l~ldld,/-r "~rl 

: a k  p'  { j' lu(s>l~'d~tJ + b k  r' = 

"[0, T] / " [0  T] / 

= akP~ (I-2pO r2( l  - r l )  
P2 + bkrl r2 

IlUlIL3,~([0, r]), T IIwII L~,/[0, rl), a 

Since the process 

(T, u ( t ) ,  o}(t) ,  A( t ) ;  t ~ [0, T])  

was selected from ~(B, C, 0), then J(T, u, o~) < ~ .  Consequently 

P2 < oo r2 
IlUlIL3/[0, rl),v , II¢OllL~,d0, r]), o <** 

and therefore J(Tk, uk, o~k) < ,,o. Hence 

(T k, uk(t), ~ok(t), Ak(t); t ~ [0, Tk] ) ~ ~(B, C, 0) 
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for all natural k. From conditions (1.4), we get 

P--~2(1 - 2pl)  < 0 , r2(1 - r l )  < 0  
Pl rl 

Consequently 

J(Tk, u k, tok) -') 0 when k --~ 0* 
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for which the inequality 

{ ( t  n, Un(t ), ton(t); t ~ [0, tn])} e 0"ld(v), n = 1, 2 . . . .  

is an arbitrary minimizing sequence of admissible processes in problem (2.1), (2.2), that is 

J(t  n,u n , t o . ) ~ J ( v )  when n ~ * *  

For each natural rn, we find a number nm and, also, the corresponding process 

( tn,  un (t), ton=(t); t e [0, tn] )  e ~ ( v )  

1 ) (v )  - J ( t . ,  u . ,  to..)[ < 

holds. 
This is possible by virtue of condition (2.7). 
Suppose Ann(t  ) is the solution of the Cauchy problem 

An(O)  = B, An. = -S(ton )An , t ~  [0, tn]  

which corresponds to the chosen process 

( t . ,  u.  (t), to. (t); t e [0, t . ] )  

For m and nm, we form the process 

(tn , un(t ) ,  ton (t) ,An (t); t ~ [0, tn ] )  

and using it, together with formulae (2.6), we construct the sequence of processes 

{(t..,k, u..,k(t), to..,k(t), An.,k(t); t ~ [0, t . . ,k])} c ~e(C. ,  C, v), k = 1, 2 . . . .  

where Cnm = Anm (tnm), that is, for each natural k, we put 

tn.,k = ktn,  un.,k(~ ) = k-2un(k-l~) almost everywhere 

ton.,k(x) = k-lton (k-lx), An.,k(X) = An(k- ix) ,  X¢ [0, tn.,k] 

For fixed n and nm, we choose a number km and, also, the corresponding process 

(tn.,k , Un.,k (t), ton=,k (t),  An.,k (t); t ~ [0, tn.,k ]) e ~g(Cn , C, v) 

for which the inequality 
1 

J(tn.,k=, Un.,k., ton=, k.) < 2-'m 

holds. This is possible by virtue of equality (2.5). 

(2.7) 

which is equivalent to equality (2.5). 
Note that a minimizing sequence is constructed using formulae (2.6) for any initial admissible process 

from ~(B, C, 0). 
We will now construct the minimizing sequence in the initial problem (1.1)-(1.3). Suppose that 
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For each natural m, we now determine the functions using the formulae 

fu~,,(t) almost everywhere t e [0, tn]  
Um*(t ) 

l u~,,k ( t - t ~ )  almost everywhere t ¢  ( t~ , t* ]  

fton(t)  t¢ [0, tn] 
to*(t)  1 [ t o~ . ,k ( t - t~ )  t¢  (tn,t*m] 

[An (t) t~ [0, tn]  
A*(t) 

tAn. ,k  ( t - t n  ) tE  (tn ,t*m] 

t* = tn. + tn. ,k- 

It can be verified directly that the inclusion 

(t*, * * A*(t); [0, t*]) ¢ ~(B,  C, v) Urn(t), tom(t), t E 

holds for each m = 1, 2 . . . . .  
We will now show that the sequence 

{ * (tm, Um(t ), tom*(t), Am*(t); tE  [0, t*])},  m = l , 2  . . . .  

is the minimizing sequence in the initial problem (1.1)-(1.3). In fact, we have 

] ) (v ) -  J(t*, u*, to*)] = ) ( v ) - ~ a  u* P~3 + b to* r2 3 ~ -  
[ LPI([0' tnml)' Y m L,/to, t. l),oj 

- allu'llL:,ct, . . , , : , , ,  + bllto'l l ': , , t , , , , . ' , .~ - 

,. ,, ,. ,, o}[+ 

+ 

- -  IJ~,)- J<tn.,-n., to~.)l + J<,,.,k., u~.,k., ,on.,k)< r~ 

Hence 

J(t*, u*, ca*) --> ~(v) as m ~ ** 

and, from inequality (2.3), we now obtain the equality 

inf J(T, u, ¢o) = inf J(T, u, to) (2.8) 
• (a, c, v) ~(v) 

for arbitrary B, C e SO(3) and v ~ ~3. 
The minimizing sequences in problem (1.1)-(1.3) of reorientation with simultaneous retardation can 

be constructed in a different way. For example, another type of manoeuvre can be chosen. However, 
it can be shown that all the minimizing sequences in a problem with an unspecified completion time 
possess a single common property: the completion time of the control processes tends to infinity. 
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3. T H E  L O W E R  L I M I T  IN  T H E  P R O B L E M  O F  R E T A R D A T I O N  

I f v  = 0, the solution of  the problem of  opt imal  re tardat ion (2.1), (2.2) is obvious: T = 0, and therefore  

inf J ( T ,  u, w) = 0 (3.1) 
~(v) 

If  v ¢ 0, then, for any choice of  the parameters  of  the functional a > 0, b > 0, Pl,  rl E [1, oo) and 
P2, r2 > 0, the inequality 

inf J ( T ,  u ,  co)  > 0 : (3.2) 
o~(o) 

always holds. 

We shall argue that the opposite is true and assume that there is a sequence of admissible processes 

{ ( t  n, un(t), eln(t); t~  [0, t . ] ) }  c ~ ( v )  

which are solutions of the boundary-value problem 

Oln(O) = v, 6} = u. almost everywhere t ~ [0, tnl, ¢On(tn) = 0 (3.3) 

by construction and, simultaneously 

~p21pl f ~r21rl sr "l  J( tn ,  u n, On)  = a Un(t)ll, d~t + b e ln( t ) l~dl . t  ---) 0 

\ [0 .  t.] : k[O, t.] : 

when n --4 oo. 
If v (191, 192, 193)T E ~:~3 and u~(t) (u l ( t ) ,  2 3 7" = = u , ( t ) ,  u , ( t ) )  , then, from Eqs (3.3), we obtain 

- o  = un(t)dl . t ,  i = 1,2,3, 
[o,t.l 

whence 

i I1)il = I uin ( t )dlJ '< $ ' =  , , = , 3  

[0. t . l  [o, t.] 

(3.4) 

(3.5) 

On the other hand, since v ¢ 0, we obtain the chain of inequalities 

3 3 3 

o<lvl,, = E I v ' l < - Z  I I.'.(,)[d~ = 
i = 1  i = l[0.  t.] [0, t . ] i  = 1 

$ = 

= f lu.(t)l,,4t<cv ~. lu.(t)l~dr t 
[0, t.] [0, t.] 

which leads to a contradict ion.  

(3.7) 

P 

_J lu.<t)l~d~-~ 0 as n ~ 
[0, t.] 

We introduce the special notation 

3 

rvr, = 2;  I~q 
i = l  

for ll, the norms in ~3. By virtue of the equivalence of the norms in finite-dimensional spaces, we conclude that a 
number c~ 0 < cv < ~, exists such that the inequality 

Ivlt, < cvlvl~ (3.6) 

holds for any v ~ ~3. 
Initially, supposepl = 1. Then, from condition (3.4), we have 
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Now,  supposep l  > 1. From condition (3.4), we obtain 

( ,~l/p, 
t Pt 

\ [0 ,  tn] / 

We use the H61der inequality 

and, therefore,  

as  n --->.0 

( o ~ Ilpt ' 

j" lu.(t)l,4t<[ J I,,.(t)l['aiaJ 
[0, t . ]  ~'[0, t.] / 

I/p] - I e 
_ j [un(t)l~,dia --> 0 as n ---> ** t n  C7 

[0, t.l 

Bearing in mind inequality (3.7), we conclude that t,,, 1 ---> 0 when n ~ ~ .  This, in turn, means that the numerical  
sequence {tn} is unbounded.  Hence,  for an arbitrary e > 0, we choose the corresponding minimizing sequence of  
the processes 

{(tn,,Un,(t),Wn,(t); t e  [0, t n , ] ) } c ~ ( v  ), k = 1,2. . .  

which possesses the proper ty  tnk> e for each natural k. From equality (3.2), we now obtain 

I I " '  
]*o.,(t)lodia ~ 0 as k--* = *  (3.8) 

[0, el 10, el 

From formulae (3.3) and (3.4), it follows that 

I'*./o-vl,,-< f f 
[o, tl [o. d 

for each t e [0, el. We now use the H61der inequality and condition (3.8). We get 

( "~Ilpl ( ~ l / P l  
1 - i l p l  Pl I l p i  U P= 

I ]un,(s)l't d i a< ,  [ I  lUn,(S'[~ , dia / < t ' -  [ I I ",(s)l*t dll / ---)0 as k - ~ -  
[0, t] ",[0, t] , '  ' ,[0, e l  " 

This, in its turn, means that I COn- (t) - v Iq ---> 0 when k ~ oo for all t e [0, e]. But, since all the norms are equivalent 
3 in R ,  then I COnk(t) - V17 -''> 0, w~ence 

[to.,(t)lv--* Ivl~ as k --> **, t e [0, e] 

For  the sequence of non-negative functions { [ COnk(t ) I r}~ -> 1, we make  use of Fatou's  theorem [5, Theorem 16.2]. 
Then 

J Ivl~dia ~ lira inf J 
k ---~ ~ 

[0, el [0, el 

Using the H61der inequality and condition (3.8) again, we obtain 

- I I r , (  t . . . .  r, L .~ Ilrl 

I I=./')1o dia-<e' ( j i=.,t,,i a~t / ~ o  
10, el x[O, e] 

But it then follows f rom inequality (3.9) that 

0 < elvl. = 

The resulting contradiction proves what is required. 

S [vloa9 < o 
[o,e] 

(3.9) 

as k -~ .0  
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4. E X I S T E N C E  AND U N I Q U E N E S S  OF THE S O L U T I O N  
IN THE R E T A R D A T I O N  P R O B L E M  

We will now consider the non-trivial case v ¢ 0 and initially establish a property of problem (2.1), (2.2). 
Suppose 

(T, u(t),  fO(/); t ~ [0, T]) ~ ~ ( v )  

For a > 0, we define the family of processes 

(Ira, ua(t ), toa(t); t ~ [0, Ta] ) 

using the formulae 

T a = or-IT, 

Since 

ua(t) = a u ( a t )  almost everywhere toa(t)  = to (a t ) ,  t ~ [0, T a] (4.1) 

p~ 
"-'~'(P] - I ) 

J(T,~, u,~, (Oct) = ael allullz..,,,([o ,p~ 
T]), T 

direct verification proves the inclusion 

(T  a, ua(t), ¢Oa(t); t ~ [0, Ta]) ~ °'9(v) 

For 

a > 0 ,  b > 0  and P] = 1, p2>0 ,  

problem (2.1), (2.2) is not solvable for measurable controls. 
We will assume that the opposite is true. Suppose the process 

(T*, u*(t), to*(t); t ~ [0, T*]) ~ °D(v) 

is the solution of the problem. Therefore, 

J(T*, u*, to*) = inf J(T, u, to) 
~(v) 

~, ,2 (4.2) 
+ a blitollL~,(t0,r]),~ 

for all a > 0 

1 - < r l < ~ ,  r 2 > 0  

For this process, using formulae (4.1), we construct the family of processes 

(T~, Ua(t), w*(t); t ~ [0, T*]) ~ ~d(v) 

which are admissible in the same problem and conclude from equality (4.2) that, when ct ~ oo 

r 2 

allu lit3 ([0.r,l) ' ,, , r2 J(T*, * * * p' + a  b[lto 113 + Uot' {l~a) = T Lq([O, T*]),O -- 

• P2 * P~ + bllm*ll r~3 . = inf J(T, u, to) -->alia IIL~,(lo, T.D,<aIIu IlL3 ([0. T.l),y Lq([0, r 1),~ ~ (v )  

The inequality holds since inequality (3.2) implies that 

Ilto*[I L~,([o. r*]>, a > 0 

The resulting contradiction proves what is required. 
Now suppose thatpl  > 1 and assume that problem (2.1), (2.2) has at least one solution 

(T*, u*(t), to*(t); t~  [0, T*]) E °'9(v) 

On constructing, according to this process, the family of admissible processes using formulae (4.1), for 
the corresponding values of the functionals we get the function 
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_r_2 

f(ot)  J(T* a, u*, to*) ot p '(p '-  ]) , e2 + r,b[lo),(t)ll~ ~ 
= = a U Lal([O,T.]),¥e l([O, T ' l ) ,  o L.¢ 

which has a unique global minimum at the point  

~1 I! J 
0~* = r2 1 P]b Lq(tO, T*l),o 

Pl lp2allu*ll~!,(t0,r,l),vj ' 

Since 

$ = 

f ( 1 )  = i n f J ( T , u , ¢ o )  
~(v) 

( ~ ( p ~ - 1 ) + ~  -~ 
r I ] 

by construction,  then,  f rom the system of  inequalities 

f ( o t * ) < f ( o t ) ,  1~>0; f ( 1 ) < f ( 0 ~ * )  

and the fact that  there  is only a single ex t remum o f f ( a ) ,  we conclude that  

or*= 1 

whence  

~ , P2 rl~bllw*ll%'~,,,~,"" r*l),o = (Pl- 1)allu IIL~ (10,r,l),~ 

This, in turn, means  that  the following representa t ion holds 

--{1÷ r2 [ P~lbllw*ll~ 
rt Pl - 1P2J q([0, r.l), o 

(4.3) 

3 3 We will now assume that  at least one  of  the normal ized spaces ( • ,  1"19 or  ( R ,  I" I o) is rigorously 
normalized.  In this case, the following assumption holds for  all possible values (1.4) of  the parameters :  
if p rob lem (2.1), (2.2) has a solution f rom ~(v) ,  then it is unique (apart  f rom equivalent controls).  

We shall argue from the opposite and assume that there are two permissible optimal processes. Without loss 
of generality, it can be assumed that the time of the completion of a manoeuvre is the same for these processes. 
This can always be achieved by extending one of the processes in a trivial manner (with a null control) since a state 
of rest is the final position. Thus, suppose that 

(T*,u*(t),¢o*(t);te[O,T*l)e~d(v), i =  1,2 

and that the following equalities hold 

J(T*, u*, w*) = inf J(T, u, 1o) 
~(v) 

Using equality (4.3), we then arrive at the conclusion that the following equalities also hold 

Ilufl -- Ilu llL',,(t0, IIw llL .,(t0, o -- II ° llL .,(to, (4.4) 

We now introduce into consideration the set s~ = (t ~ [0, T*]: the functions u~'(t) and u~(t) are not positively 
proportional}. The set s~ is obviously measurable, and we assume that ~t(sg) > 0. We will now show that this is 
impossible. 

To be specific, we will assume that the space (R 3, 1" Iv) is a strictly normalized space. In this case, for any ~. 
[0, 1], we have 
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Ix.r( , )  + (1 - x ) . ~ ( o l ,  < xl .*(01,  ÷ (1 - ~ ) lut , ) l , ,  , ~ 

The following chain of inequalities 

Pl 
--  III~uW +(1  * ' --  II~,u~' + ( 1 -  ~)1112 * L'pu(tO, r* l) ,y - k ) l 12  Y Lpl(to, r*]) 

= .[ IXu~(t) +(1 - k)u2*(t)lrP'dl.t = 
[0, T*] 

, Pt , Pt 
- J ' l X u ~ ' ( o + ( , - ~ ) n . ( o l ~ d ~ +  I IXu~' ( t )÷(1-X)u2(OIY ap<  

sd [0, r*]\,.~. 

, Pm Pm 
< 5 ( ~ l u * ( o l . ÷ ( l - X ) l u : o ) l , )  d~+ f (~ l .* ( t ) l ,+Cl -X) l .~ ' . ) l . )  d~--  

,~ [0, T*IX~ 

• P~d * P' 
-- f ( ~ l . ~ ' . ) l , + ( t - X ) l u 2 ( o l . )  .--IlXlu*I~+(Z-X)Iu21~IIL...o,~.D 

[0, T*I 

leads to the conclusion that 

-< ~.111";'1.11~...o.r.~) + (1 - ~.)lllu~'l.ll~. ,.o, ~.D -- 

-- ~.llut'l l ,? . ,o,  ,.D.~, + (1  - ~ )llu~'ll,.....o. ,-.)) .,,. -- Ilu~'ll L'~..o. ,-.)),., 

The equality (4.4) has been used here. 
For an arbitrary normalized space (~3, I" [ ~), from equality (4.4) we obtain the non-rigorous inequality 

IIx,*~' + (t - z,)te~n L,,([o, r'l), o < I1"~'11,? . o ,  r . D , o  

Direct verification shows that a convex combination of processes from ~(v) with the same completion time again 
generates an admissible process from ~(v). The inclusion 

(T*,  g u * ( t )  + (1 - ~,)u~'(t), Xol~'(t) + (1 - X)(o~'(t); t ¢ [0, T*] )  ~ ~ ( v )  

therefore holds for any X ~ [0, 1]. 
However, if ~t(M) > 0, we obtain the inequality 

J(T*, ),,u* + (1 -2L)u~', Xo)* + (1 -2L)~ ' )  = (4.5) 

-- allXo ~' + (l - ~. )u~l[Pi, (10, T'l), T + bllko) ~ + (1 - ~. )o)~1[ ~, ([o, T'l), a < 

< allu~*ll~/3,, ,,,., ,to, r*],,~ + t'll~°~'ll~',, "c, (t0, r*l),* = s(r*, U*, O~') = ~(v)inf J(T, u, o1) 

for the values of the functional, which is impossible. The resulting contradiction shows that Ix(a) = 0 and, 
consequently, a positive function x(t) exists almost everywhere in [0, T*] for which the following equality holds 

u~'(t) = x(t)u~(t) for almost all t e  [0, T*] (4.6) 

We will now show that x(t) = 1 almost everywhere in t ~ [0, T*]. It follows from the preceding discussion that, 
whenpz = 1, the problem does not have admissible solutions. We will therefore assume that 1 < pz < oo. However, 
it is well known [6, p. 594]; [7, p. 254] that the space Lpz([0, T*]) is strictly normalized. Hence, if the equality 

lui,(t)l~ -- Plu~'(Ol~ for almost all t e  [0, r*]  
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is not satisfied for some number 13 > 0, then, on taking account of equality (4.4) 

<  -Illurl ll ., <[o. + c l -  .)lllu 'l ll = Ilurll,. l <(o. r. ] ,  

we arrive at a contradiction similar to inequality (4.5). Consequently, for a certain 13 > 0, we have 

lug'(/)Iv = 131u,*(t)lv for almost all t e  t0,r*] 

The conclusion that 

x(t) = 13 = 1 for almost all t ~ [0, T*] 

(4.7) 

follows from a comparison of formulae (4.7), (4.6) and (4.4). 
Hence, the uniqueness of the solution of problem (2.1), (2.2) is proved in this case. 
Since, according to assumption (1.4), we have rl > 1, then the reasoning in the case of a strictly 

normalized space (R 3, ['Iv) is carried out in a similar manner. 

5. T H E  E X I S T E N C E  OF S O L U T I O N S  IN 
T H E  P R O B L E M  OF R E O R I E N T A T I O N  

The purpose of this section is to demonstrate the fact that the problem of optimal orientation (1.1)-(1.3), 
under the assumptions used, almost never has a solution in the class of measurable controls. We will 
now refine this assertion. 

We shall assume that inequalities (1.4) establish a possible range of values of the parameters of the 
functional and that one of the spaces (~3 I'lv) or (~-3, [. [ ~) is strictly normalized. 

Suppose ~V C ~3 is the set of those initial angular velocities v for which the corresponding problem 
(2.1), (2.2) of optimal retardation has an admissible solution (from O3(v)). In other words, if v s ~ ,  
then there is a unique process 

(T o, uo(t), too(t); t e [0, To]) ~ ~ ( v )  

for which the following equality holds 

J(Tv,  uv, too) = inf J(T,  u, to) 
~(v) 

A unique matrix Dv = D(Tv) ~ SO(3), which is a solution of the Cauchy problem 

D(0) = 13, 1~ = -S ( tov )D  , t ~ [0, To] 

therefore corresponds to each v e ~V. 
Suppose B, C s SO(3) and v s [~3 are the matrix and the vector which determine the boundary 

conditions in problem (1.1)-(1.3). If v e ~ and CB r = Dv, then, by virtue of equality (2.8), a solution 
of problem (1.1)-(1.3) is also a solution of problems (2.1), (2.2). 

If either v ~ V" or CB T ~ Dv, then the problem of optimal reorientation (1.1)-(1.3) with a free 
completion time is unsolvable for measurable controls. 

Actually, suppose v ¢ Y. We will assume that there is an optimal process 

(T*, u*(t), to*(t), A*(t); t ~ [0, T*]) ~ ~(B, C, v) 

in the case of the boundary conditions B, C ~ SO(3) and v ~ R 3 in problem (1.1)-(1.3). 
But, by virtue of equality (2.8), the process 

(T*, u*(t), m*(t); t ~ [0, T*]) ¢ ~ ( v )  

is then a solution of problem (2.1), (2.2). That is a contradiction. 
T Now, suppose v ~ V" and CB ~ Dr. Again, if 
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(T*, u*(t), O~*(t),A*(t); t~ [0, T*]) ¢ ~(B, C, v) 

is a solution of problem (1.1)-(1.3), then 

(T*, u*(t), w*(t); t ~ [0, T*]) ~ ~(v) 

is a solution of problem (2.1), (2.2). But, since CBr~ Du, there are then two different solutions in the case of the 
optimal retardation problem, which is impossible under the assumptions which have been used. 
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